CSE4203: Computer Graphics
 Chapter - 6 (part - A) Transformation Matrices

Mohammad Imrul Jubair

Outline

- Transformation
- Linear Transformation
- Scaling
- Shearing
- Rotation
- Composite Transformation

Credit

Fundamentals of Computer Graphics F O U R T H E D I T I O N

Steve Marschner

Peter Shirley
with
Michacl Achikhmin Michael Cletcher
Naty Hoftman
Carretefotinsen Mamara Munane Trik Reinhard WWillam B. Thomp \& Perce wibemsen Cin wrili

1
x
$\times \mathrm{F}^{3}$

CS4620: Introduction to Computer Graphics

Cornell University Instructor: Steve Marschner http://www.cs.cornell.edu/courses/cs46 20/2019fa/

2D Linear Transformations (1/1)

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a_{11} x+a_{12} y \\
a_{21} x+a_{22} y
\end{array}\right]
$$

Linear Transformation: Operation of taking a vector and produces another vector by a simple matrix multiplication.

Scaling (1/6)

- The most basic transform is a scale along the coordinate axes.

$$
\operatorname{scale}\left(s_{x}, s_{y}\right)=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

Scaling (2/6)

- The most basic transform is a scale along the coordinate axes.

$$
\operatorname{scale}\left(s_{x}, s_{y}\right)=\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]
$$

The matrix does to a vector with Cartesian components (x, y):

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]
$$

Scaling (3/6)

$$
\operatorname{scale}(0.5,0.5)=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right]
$$

Scaling (4/6)

$$
\text { scale }(0.5,0.5)=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 0.5
\end{array}\right]
$$

Scaling (5/6)

$$
\operatorname{scale}(0.5,1.5)=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 1.5
\end{array}\right]
$$

Scaling (6/6)

$$
\operatorname{scale}(0.5,1.5)=\left[\begin{array}{cc}
0.5 & 0 \\
0 & 1.5
\end{array}\right]
$$

Scaling (6/6)

Scale (2,2)

Shearing (1/5)

- A shear is something that pushes things sideways

(a) Original object

(b) Object after x shear

Shearing (2/5)

- A shear is something that pushes things sideways

(a) Original object

(b) Object after x shear

$$
\operatorname{shear-x}(s)=\left[\begin{array}{ll}
1 & s \\
0 & 1
\end{array}\right], \quad \text { shear-y }(s)=\left[\begin{array}{ll}
1 & 0 \\
s & 1
\end{array}\right]
$$

Shearing (3/5)

$$
\text { shear- } \mathrm{x}(1)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Shearing (4/5)

$$
\text { shear- } \mathbf{x}(1)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Shearing (5/5)

$$
\text { shear- } y(1)=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

Rotation (1/11)

$x_{a}=r \cos \alpha$,
$y_{a}=$

Rotation (2/11)

$$
\begin{aligned}
x_{a} & =r \cos \alpha \\
y_{a} & =r \sin \alpha \\
x_{b} & =r \cos (\alpha+\phi)= \\
y_{b} & =
\end{aligned}
$$

Rotation (3/11)

$$
\begin{aligned}
& x_{a}=r \cos \alpha \\
& y_{a}=r \sin \alpha \\
& x_{b}=r \cos (\alpha+\phi)=r \cos \alpha \cos \phi-r \sin \alpha \sin \phi \\
& y_{b}=
\end{aligned}
$$

Rotation (4/11)

$$
\begin{aligned}
& x_{a}=r \cos \alpha, \\
& y_{a}=r \sin \alpha . \\
& x_{b}=r \cos (\alpha+\phi)=r \cos \alpha \cos \phi-r \sin \alpha \sin \phi, \\
& y_{b}=r \sin (\alpha+\phi)=r \sin \alpha \cos \phi+r \cos \alpha \sin \phi . \\
& x_{b}= \\
& y_{b}=
\end{aligned}
$$

Rotation (5/11)

$$
\begin{aligned}
& x_{a}=r \cos \alpha, \\
& y_{a}=r \sin \alpha . \\
& x_{b}=r \cos (\alpha+\phi)=r \cos \alpha \cos \phi-r \sin \alpha \sin \phi, \\
& y_{b}=r \sin (\alpha+\phi)=r \sin \alpha \cos \phi+r \cos \alpha \sin \phi . \\
& x_{b}=x_{a} \cos \phi-y_{a} \sin \phi, \\
& y_{b}=y_{a} \cos \phi+x_{a} \sin \phi . \\
& \operatorname{rotate}(\phi)=[
\end{aligned}
$$

Rotation (6/11)

$$
\begin{aligned}
& x_{a}=r \cos \alpha, \\
& y_{a}=r \sin \alpha . \\
& x_{b}=r \cos (\alpha+\phi)=r \cos \alpha \cos \phi-r \sin \alpha \sin \phi, \\
& y_{b}=r \sin (\alpha+\phi)=r \sin \alpha \cos \phi+r \cos \alpha \sin \phi . \\
& x_{b}=x_{a} \cos \phi-y_{a} \sin \phi, \\
& y_{b}=y_{a} \cos \phi+x_{a} \sin \phi . \\
& \operatorname{rotate}(\phi)=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
\end{aligned}
$$

Rotation (7/11)

$$
\left[\begin{array}{rr}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right]=\left[\begin{array}{rr}
0.707 & -0.707 \\
0.707 & 0.707
\end{array}\right]
$$

Rotation (8/11)

$$
\left[\begin{array}{rr}
\cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\
\sin \frac{\pi}{4} & \cos \frac{\pi}{4}
\end{array}\right]=\left[\begin{array}{rr}
0.707 & -0.707 \\
0.707 & 0.707
\end{array}\right]
$$

Rotation (9/11)

$\operatorname{rotate}(\phi)=\left[\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$

Q: What about - ve angle?

Rotation (10/11)

Rotate(90)

Rotation (11/11)

Rotate(90)

Reflection (1/5)

$$
\text { reflect- } y=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad \text { reflect }-x=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Reflection (2/5)

$$
\text { reflect- } y=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad \text { reflect }-x=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Reflection (3/5)

$$
\text { reflect- } y=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad \text { reflect }-x=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Reflection (5/5)

$$
\text { reflect- } y=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right], \quad \text { reflect }-x=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Affine transformation (1/2)

- Maps points to points, lines to lines, planes to planes.
- Preserves the ratio of lengths of parallel line segments.
- Sets of parallel lines remain parallel.
- Does not necessarily preserve angles between lines or distances between points.

Affine transformation (2/2)

- Maps points to points, lines to lines, planes to planes.
- Preserves the ratio of lengths of parallel line segments.
- Sets of parallel lines remain parallel.
- Does not necessarily preserve angles between lines or distances between points.

Composition of Transformations (1/11)

Composition of Transformations (2/11)

- Apply more than one transformation:
- i.e., for a 2D point v_{1} we might want to -

1. first apply a scale S
2. then a rotation R.

- This would be done in two steps:

1. first, $v_{2}=S v_{1}$
2. then $v_{3}=R v_{2}$.

Composition of Transformations (3/11)

Therefore -

1. $v_{2}=S v_{1}$
2. $v_{3}=R v_{2}$
3. $v_{3}=R\left(S v_{1}\right)$
4. $\mathrm{v}_{3}=(\mathrm{RS}) \mathrm{v}_{1}$ [matrix multiplication is associative]
5. $\mathrm{v}_{3}=\mathrm{Mv}_{1}$ [Where $M=R S$]

Composition of Transformations (4/11)

$$
\begin{gathered}
\mathbf{v}_{\text {out }}=\mathbf{M} \mathbf{v}_{\mathbf{i n}} \\
{[\text { Where } M=R S \text {] }}
\end{gathered}
$$

- We can represent the effects of transforming a vector by two matrices in sequence using a single matrix of the same size
- which we can compute by multiplying the two matrices: $\mathbf{M}=$ RS

Composition of Transformations (6/11)

Composition of Transformations (7/11)

Composition of Transformations (8/11)

- It is very important to remember that these transforms are applied :
- from the right side first.
- So the matrix $M=R S$
- first applies S and then R.

Composition of Transformations (9/11)

Composition of Transformations (10/11)

$\mathrm{M}=$?

Composition of Transformations (11/11)

$\mathrm{M}=$

Q: What about more than two
transformations:
$\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \rightarrow \mathrm{~T}_{3} \ldots \rightarrow \mathrm{~T}_{\mathrm{n}}$.

Practice Problem - 1

- Stretch the clock by 50% along one of its diagonals
- so that 8:00 through 1:00 move to the northwest and 2:00 through 7:00 move to the southeast.

Practice Problem - 1 (Sol.)

Practice Problem - 1 (Sol.)

rotate(?)

Practice Problem - 1 (Sol.)

scale(?)

Practice Problem - 1 (Sol.)

rotate(?)

Practice Problem - 1 (Sol.)

- rotate $\left(45^{\circ}\right) \rightarrow$ scale $(1.5,1) \rightarrow$ rotate $\left(-45^{\circ}\right)$.
- Q: Draw the steps
- $\mathrm{M}=\mathrm{R}\left(-45^{\circ}\right) \mathrm{S}(1.5,1) \mathrm{R}\left(45^{\circ}\right)$
$=R^{\top} S R$
- Q: Calculate the matrix

Practice Problem - 2

- Reflect the clock along a line goes through origin:

$$
\mathrm{y}=\mathrm{mx}+\mathrm{c}
$$

w.r.t y-axis

w.r.t arbitrary line

Thank you

